Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(10): e0292448, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37796781

RESUMO

Metabolic syndrome is a multifactorial disease with high prevalence worldwide. It is related to cardiovascular disease, diabetes, and obesity. Approximately 80% of patients with metabolic syndrome have some degree of fatty liver disease. An adenosine derivative (IFC-305) has been shown to exert protective effects in models of liver damage as well as on elements involved in central metabolism; therefore, here, we evaluated the effect of IFC-305 in an experimental model of metabolic syndrome in rats induced by a high-fat diet and 10% sucrose in drinking water for 18 weeks. We also determined changes in fatty acid uptake in the Huh-7 cell line. In the experimental model, increases in body mass, serum triglycerides and proinflammatory cytokines were induced in rats, and the adenosine derivative significantly prevented these changes. Interestingly, IFC-305 prevented alterations in glucose and insulin tolerance, enabling the regulation of glucose levels in the same way as in the control group. Histologically, the alterations, including mitochondrial morphological changes, observed in response to the high-fat diet were prevented by administration of the adenosine derivative. This compound exerted protective effects against metabolic syndrome, likely due to its action in metabolic regulation, such as in the regulation of glucose blood levels and hepatocyte fatty acid uptake.


Assuntos
Síndrome Metabólica , Humanos , Ratos , Animais , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/prevenção & controle , Síndrome Metabólica/induzido quimicamente , Sacarose/metabolismo , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Adenosina/metabolismo , Glucose/metabolismo , Ácidos Graxos/metabolismo , Fígado/metabolismo
2.
Am J Cancer Res ; 10(6): 1844-1856, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32642295

RESUMO

Hepatocellular carcinoma (HCC) can be originated from various etiologies and is preceded mostly by cirrhosis. Unfortunately, there is no effective treatment due to its late prognosis. Alterations in autophagy have been reported during the development and progression of HCC. Autophagy allows for the maintenance of a positive energy balance and the proper functioning of organelles through the selective degradation of cellular components. It has been demonstrated that autophagy suppresses spontaneous tumorigenesis in the liver. Therefore, autophagy has become a therapeutic target for effective HCC therapies. We have previously demonstrated that the adenosine-derived compound, IFC-305, has a chemopreventive effect on HCC, in addition to maintaining mitochondrial function in a sequential model of cirrhosis-HCC. Thus, the aim of this work was to determine if IFC-305 has an effect on autophagy in the sequential model of cirrhosis-HCC induced by diethylnitrosamine or in vitro in the HCC cell line HepG2 and mouse embryonic fibroblasts. The results of this work showed that IFC-305 modifies the levels of the BECN1, p62/SQSTM1 and LC3-II proteins that play an important role in the autophagic process. In vivo, IFC-305 regulates the levels of the PINK1 and PARKIN proteins that specifically mark mitochondria for repair or degradation. In the HepG2 cell line, its effect was accompanied by a decrease in cell viability. Interestingly, in nontumoral cells the time to autophagy induction was different compared to the HepG2 cells. This study suggests that autophagy induction may be part of the mechanism by which IFC-305 maintains mitochondrial function, thereby facilitating the prevention and reversal of HCC.

3.
Cancer Biol Ther ; 21(1): 81-94, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31552788

RESUMO

S-adenosylmethionine (SAM), biosynthesis from methionine and ATP, is markedly decreased in hepatocellularular carcinoma (HCC) for a diminution in ATP levels, and the down regulation of the liver specific MAT1a enzyme. Its metabolic activity is very important in the transmethylation reactions, the methionine cycle, the biosynthesis of glutathione (GSH) and the polyamine pathway, which are markedly affected in the HCC. The chemo-preventive effect of IFC305 in HCC induced by DEN, and the increase of ATP and SAM in CCl4-induced cirrhosis have been previously demonstrated. The aim of this work was to test whether this chemo-preventive effect is mediated by the induction of SAM biosynthesis and its metabolic flow. SAM hepatic levels and the methionine cycle were recovered with IFC305 treatment, restoring transmethylation and transsulfuration activities. IFC305 treatment, increased MAT1a levels and decrease MAT2a levels through modulation of their post-transcriptional regulation. This occurred through the binding of the AUF1 (binding factor 1 AU-rich sites) and HuR (human antigen R) ribonucleoproteins to Mat1a and Mat2a messenger RNAs, which maintained their nuclear localization. Finally, the compound inhibited the polyamine pathway favoring the recuperation of the normal methionine and one carbon cycle recuperating the metabolic flow of methionine, which probably facilitated its HCC chemo-preventive effect.


Assuntos
Adenosina/análogos & derivados , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Metionina Adenosiltransferase/metabolismo , Proteínas de Ligação a RNA/metabolismo , S-Adenosilmetionina/metabolismo , Adenosina/farmacologia , Animais , Apoptose , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proliferação de Células , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Metionina Adenosiltransferase/genética , Proteínas de Ligação a RNA/genética , Ratos , Ratos Wistar , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
4.
J Pharmacol Exp Ther ; 361(2): 292-302, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28209723

RESUMO

Background: Mitochondrion is an important metabolic and energetic organelle that regulates several cellular processes. Mitochondrial dysfunction has been related to liver diseases including hepatocellular carcinoma. As a result, the energetic demand is not properly supplied and mitochondrial morphologic changes have been observed, resulting in an altered metabolism. We previously demonstrated the chemopreventive effect of the hepatoprotector IFC-305. Aim: In this work we aimed to evaluate the functional, metabolic, and dynamic mitochondrial alterations in the sequential model of cirrhosis-hepatocellular carcinoma induced by diethylnitrosamine in rats and the possible beneficial effect of IFC-305. Methods: Experimental groups of rats were formed to induce cirrhosis-hepatocellular carcinoma and to assess the IFC-305 effect during cancer development and progression through the evaluation of functional, metabolic, and dynamic mitochondrial parameters. Results: In this experimental model, dysfunctional mitochondria were observed and suspension of the diethylnitrosamine treatment was not enough to restore them. Administration of IFC-305 maintained and restored the mitochondrial function and regulated parameters implicated in metabolism as well as the mitochondrial dynamics modified by diethylnitrosamine intoxication. Conclusion: This study supports IFC-305 as a potential hepatocellular carcinoma treatment or as an adjuvant in chemotherapy.


Assuntos
Adenosina/análogos & derivados , Anticarcinógenos/uso terapêutico , Carcinoma Hepatocelular/prevenção & controle , Cirrose Hepática Experimental/prevenção & controle , Neoplasias Hepáticas Experimentais/prevenção & controle , Mitocôndrias Hepáticas/efeitos dos fármacos , Adenosina/farmacologia , Adenosina/uso terapêutico , Trifosfato de Adenosina/biossíntese , Animais , Anticarcinógenos/farmacologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Complexo I de Transporte de Elétrons/metabolismo , Cirrose Hepática Experimental/metabolismo , Cirrose Hepática Experimental/patologia , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/patologia , Masculino , Potencial da Membrana Mitocondrial , Mitocôndrias Hepáticas/metabolismo , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA